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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement

MULTIPLY S — BY _—s TO GET
TO GET <« BY B DIVIDE
angstrom 1.000 000 x E -10 meters (m)
atmosphere (normal) 101325 xE +2 kilo pascal (kPa)
bar 1.000 000 x E +2 kilo pascal (kPa)
bam 1.000 000 x E -28 meter? (m?)
British thermal unit (thermochemical) 1.054 350 x E +3 joule ()
calorie (thermochemical) 4.184 000 joule (1)
cal (thermochemical)/cm? 4.184 000 xE -2 mega joule/m? (MJ/m?)
curie 3.700 000 x E +1 *giga becquerel (GBq)
degree (angle) 1.745 329 xE -2 radian(rad)
degree Fahrenheit ty = (€f + 459.67)/1.8 degree kelvin (K)
electron volt 1.602 19 xE-19 joule (J)
erg 1.000 000 x E -7 joule (J)
erg/second 1.000 000 x E -7 watt (W)
foot 3.048 000 xE -1 meter (m)
foot-pound-force 1.355 818 joule (J)
gallon (U.S. liquid) 3.785 412 xE -3 meter’ (m%)
inch 2540 000 xE -2 meter (m)
jerk 1.000 000 x E +9 joule (J)
joule/kilogram (J/kg) (radiation dose

absorbed) 1.000 000 Gray (Qy)
kilotons 4.183 terajoules
kip (1000 Ibf) 4.448 222 xE +3 newton (N)
kip/inch?® (ksi) 6.894 757 x E +3 kilo pascal (kPa)
ktap 1.000 000 x E +2 newton-second/m>

(N-s/m?)

micron 1.000 000 x E -6 meter (m)
mil 2.540 000 xE -5 meter (m)
mile (intemational) 1.609 344 x E +3 meter (m)
ounce 2834 952 xE -2 kilogram (kg)
pound-force (Ibs avoirdupois) 4.448 222 newton (N)
pound-force inch 1.129 848 x E -1 newton-meter (N m)
pound-forcefinch 1.751 268 xE +2 newton/meter (N/m)
pound-force/foot? 4.788 026 xE -2 kilo pascal (kPa)
pound-forcefinch? (psi) 6.894 757 kilo pascal (kPa)
pound-mass (lbm avoirdupois) 4535924 xE -1 kilogram (kg)
pound-mass-foot? (moment of incrtia)  4.214 011 xE -2 kilogram-meter? (kg m?)
pound-mass/foot’ 1.601 846 x E +1 kilogram/meter’ (kg/m®)
rad (radiation dose absorbed) 1.000 000 x E -2 **Gray (Qy)
roentgen 2579760 xE 4 coulomb/kilogram (Ckg)
shake 1.000 000 xE -8 second (s)
slug 1.459 390 x E +1 kilogram (k)
torr (mm Hg, 0°C) 1.33322 xE - kilo pascal (kPa)

*The becquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/s.
**The Gray (QGy) is the SI unit of absorbed radiation.
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SECTION 1
INTRODUCTION

This report presents a description of the final algorithms included in the Worldwide Cloud
Prediction Model (WCPM) developed by Pacific-Sierra Research Corporation. Existing code
and algorithms are representative of development through feasibility demonstration on a regional
basis. Development beyond a feasibility level was not possible due to a lack of data supplied by
DSWA. Examples of algorithm performance and skill scores results are presented in Poehls,
Crandall, O’Rourke and Heikes (1997).

The forecast code is designed around a unified NN with major weather inputs representing
advection of clouds, persistence of clouds, and evolution of clouds along with several influence
parameters. A pixel-by-pixel neural network (NN) algorithm is adopted as the generalized
approach to cloud forecasting. The approach is based upon the assumption that a forecast is
possible based solely upon the past, current and approaching clouds to a single pixel. The pixel-
by-pixel implementation was chosen to minimize and simplify the data input into the NN. Each
pixel is treated separately and is only loosely connected to surrounding pixels through the
latitude and longitude inputs. No formal synoptic weather inputs are employed in this approach.
The structure of the code is illustrated in Figure 1-1. This final form is somewhat different from
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Figure 1-1. General structure of the code.




the original configuration that employed a separate NN for each module input and a NN to
combine the individual forecasts. The latter was abandoned in favor of the unified approach to
reduce the redundancy of the input parameters.

The weather inputs are divided into two categories: cloud observation data and meteorological
parameter input. The advection and persistence modules represent the former while the evolu-
tion module represents the latter. For this study’s purposes, the cloud observation data is taken
from Support of Environmental Requirements for Cloud Analysis and Archive (SERCAA) level
3 nephanalysis. Navy Operational Global Atmospheric Prediction System (NOGAPS) numerical
analysis and forecasts are used for the meteorological parameter inputs

The model will be described below in its final form, that is, merged into a single NN. The major
pieces of the total process will be described in order of decreasing importance. The primary
pieces are the NN itself and the advection algorithm which is pervasively utilized to identify and
locate data in space and time. The NN is the dominant piece with all other algorithms directed
toward providing either input or training data to the NN. The persistence and evolution
algorithms are actually direct results of the advection process. One should therefore remember
that although the algorithms are separately described, there was never any intention that they
would perform as stand alone modules. Finally, although not directly associated with the
forecast algorithm, the definition and calculation of skill scores will be discussed in Section 6.



SECTION 2
NEURAL NETWORK ALGORITHM

The NN will be discussed in three parts. First, the general form of the NN is presented. Second,
the training process is described. Third, the final selection of the input vectors was made based
upon NN prediction performance. All are discussed in the following sections.

2.1 NEURAL NETWORK DESIGN.

The NN used in this project is the version of a feed-forward back-propagation (FFBP) originally
written in C by Caudill (1994). Our version has been translated into FORTRAN 77. The NN is
completely described in Caudill (1994). The FORTRAN code as we used it is listed in Section
2.4 of this document. This project did not progress beyond the use of the FFBP NN in its
general form due to a severe lack of training data.

The fully-connected, feed-forward-back-propagation NN shown in Figure 2-1 was adopted for
use on this project. The NN has 28 (the final number of inputs) input nodes, two hidden-layers

28 input parameters

® O & 9 & & 0 ¢ 0 0 0 0 o

12 nodes

10 nodes

2 hidden-layers

3 output nodes

Figure 2-1. Neural network configuration.

(12 and 10 nodes each) and three output nodes for a total of 430 degrees of freedom. Several
other variations on the number of hidden layers and the number of nodes in the hidden-layers
were attempted. This was by no means an exhaustive study but several trends pointed toward the
current selection. Greatly increasing the number of nodes in the hidden-layers significantly im-
proved the training error but not the prediction error. A single hidden-layer performed more
poorly. Reducing the hidden-layer nodes degraded the prediction capability.



2.2 NEURAL NETWORK TRAINING.

Training takes place on a batch of input vectors selected at random from the population of
training vectors. The objective of training is to reduce the sum squared difference between the
NN output and target cloud fields. The weight/bias set giving the least error is sought using a
line minimization approach. Line minimization attempts to quickly hunt down the minimum of
a two-dimensional curve by successively fitting parabolas to a region that brackets the minimum.
This is usually more efficient than iterative methods where the minimum is found by taking a
series of steps in the direction of greatest decreasing error (gradient descent), particularly if the
minimum lies within a broad, shallow region of the curve. The error surface is actually
multidimensional, the dimension depending on the number of weights and biases in the network.
The search for a global minimum on the multidimensional error surface is reduced to a series
two-dimensional searches by iteratively finding the minimum in first one direction, then another.
Gradient descent moves in the direction of maximal error reduction. We employ a more
efficient search that proceeds in the so-called conjugate gradient direction, which is a
compromise between the previous search direction and that of gradient descent. The path
defined by conjugate gradient directions tends to approach the minimum smoothly, eliminating
inefficient zigzags inherent in the gradient descent approach.

The NN was extensively trained on the best and longest data set, the first six days of EMDA data
(days 73 through 78). The following procedure was used:

1. An input file was created for all descriptors of each available (some were missing)
hourly image.

2. All pixels were randomly selected from the first three days of data.

3. The NN was trained for 100 iterations on this training set.

4. The process was repeated for the second three days of data but the training was started
with the previously obtained nodal weights.

The above procedure guaranteed that training included a distribution of available latitudes, lon-
gitudes, times of day and land types. (Dividing the data into two three-day pieces was based

upon a computer limitation.) The NN was trained on a total of approximately 500,000 inde-
pendent input vectors.

Training was stopped after 100 iterations in all cases. It was found that 95% of the training was
accomplished in the first 25 to 35 iterations. Little improvement in training was realized after
that point. In general, the training error varied from 15 to 20% when raw data was used as in-
put; a 5% improvement was realized when median filtered data was used for training.



2.3 DATA VECTOR DEFINITION.

The final input vector definition was selected based upon an input parameter sensitivity study.
The most straightforward method of determining which input parameters are important is to
selectively omit parameters from the training process (Butler and Meredith, and Stogryn, 1996).
The removal of a parameter can affect NN performance in three ways: 1) if the parameter is
important, the NN performance is degraded, 2) if the parameter is unimportant, the NN
performance is unchanged, and 3) if the parameter acts like a noise source, the NN performance
is improved. Parameters that fall into the last category should be eliminated. Parameters that
fall into the second category should be strongly considered for removal because their inclusion
increases the training requirements and adds undesired degrees-of-freedom to the network.

A detailed study of all possible parameter combinations was obviously not performed. Instead,
the study focused on the persistence input, the evolution parameters, and the influence
parameters (latitude, longitude, land type, elevation, etc.). Table 2-1 presents the qualitative
results of the study. Two important results emerge. First, the elevation input degrades the NN
performance. Second, individually removing any of the many evolution parameters does not

affect the NN performance, however, removing all of the evolution parameters degrades NN
performance.

Based upon these results, the evolution parameters were re-evaluated in terms of the applicable
atmospheric physics to select a much reduced input parameter set. The primary atmospheric
condition that favors cloud formation is the uplift of warm moist air. This can be characterized
by the NOGAPS relative humidity, velocity divergence, and temperature parameters at various
altitudes. A new evolution predictor set of relative humidity, velocity divergence and tempera-
ture at five altitudes (Sea level, 100, 300, 500 and 850 hPa) was tested. Five altitudes provided
redundant information. Two altitudes ( 850 and 500 mBars) provided the best compromise.
Temperature was found to provide no meaningful NN performance and was eliminated from the
predictors. The final predictors are listed in Table 2-2. The basic results reflect the most impor-
tant predictors found by others. In reviewing the predictors (used and not used) it is important to
remember that these were chosen based upon NN performance with a particular, limited set of
tropical cloud data. Other scenarios might require some additions or adjustments to these pre-
dictors. More extensive NN training might reduce the training error and result in additional pre-
dictors becoming important.




Table 2-1. Skill scores for NN forecasts (cloud fraction).

n Shamp Shamp )
Training Data Obs. For. Brier ESS G20/20

2 hour forecast

al* 0.97 0.67 0.12 0.26 0.62
elevation removed 0.97 0.77 0.13 0.33 0.67
lav/lon removed 0.97 0.77 0.14 0.21 0.67
longitude removed 0.97 0.70 0.13 0.32 0.62
land type removed 0.97 0.54 0.15 0.27 0.50
evol removed 0.97 0.71 0.11 0.32 0.65
evol removed except div850 0.97 0.74 0.12 0.32 0.67
elev. evolution <500 removed 0.97 0.74 0.12 0.29 0.66
div @ 850,500 onlyt 0.97 0.70 0.12 0.22 0.64
rh @ 850,500 onlyt 0.97 0.71 0.12 0.36 0.65
tmp @ 850,500 only+ 0.97 0.74 0.1 0.39 0.67
temp & div @ 850,500 onlyt 0.97 0.75 0.12 0.33 0.67
rh & div @ 850,500 onlyt 0.97 0.73 0.12 0.39 0.66
tmp & rh @ 850,500 onlyt 0.97 0.76 0.12 0.32 0.68
evol @ 850,500 onlyt 0.97 0.68 0.12 0.29 0.63
3 hour forecast

afr* 0.97 0.67 0.13 0.28 0.60
elevation removed 0.97 0.75 0.13 0.31 0.66
lat/lon removed 0.97 0.78 0.14 0.19 0.67
longitude removed 0.97 0.68 0.13 0.32 0.61
land type removed 0.97 0.51 0.16 0.25 0.47
evol removed 0.97 0.69 0.12 0.32 0.63
evol removed except div850 0.97 0.71 0.12 0.30 0.64
elev. evolution <500 removed 0.97 0.71 0.12 0.31 0.64
div @ 850,500 only+ 0.97 0.68 0.12 0.22 0.63
th @ 850,500 on|y+ 0.97 0.69 0.13 0.33 0.63
tmp @ 850,500 onlyt 0.97 0.73 0.12 0.31 0.66
temp & div @ 850,500 only+ 0.97 0.74 0.12 0.33 0.66
rh & div @ 850,500 onlyt+ 0.97 0.71 0.13 0.33 0.64
tmp & rh @ 850,500 onlyt 0.97 0.75 0.12 0.34 0.67
evol @ 850,500 onlyt 0.97 0.66 0.12 0.30 0.61
6 hour forecast

all* 0.97 0.64 0.13 0.30 0.58
elevation removed 0.97 0.75 0.14 0.31 0.66
lat/lon removed 0.97 0.74 0.14 0.17 0.64
longitude removed 0.97 0.68 0.14 0.29 0.60




Table 2-1. Skill scores for NN forecasts (cloud fraction) (Continued).

6 hour forecast (continued)

land type removed 0.97 0.48 0.18 0.21 0.44
evol removed 0.97 0.61 0.13 0.32 0.57
evol removed except div850 0.97 0.68 0.13 0.28 0.63
elev. evolution <500 removed 0.97 0.67 0.12 0.30 0.61
div @ 850,500 onlyt 0.97 0.65 0.13 0.27 0.59
rh @ 850,500 onlyt 0.97 0.67 0.14 0.30 0.60
tmp @ 850,500 only+ 0.97 0.73 0.13 0.30 0.66
temp & div @ 850,500 onlyt 0.97 0.73 0.13 0.26 0.65
rh & div @ 850,500 onlyt 0.97 0.70 0.14 0.30 0.63
tmp & rh @ 850,500 onlyt+ 0.97 0.74 0.13 0.26 0.66
evol @ 850,500 onlyt 0.97 0.66 0.12 0.19 0.61
9 hour forecast

al* - 0.97 0.59 0.13 0.37 0.55
elevation removed 0.97 0.74 0.13 0.31 0.66
lat/lon removed 0.97 0.77 0.14 0.26 0.66
longitude removed 0.97 0.72 0.14 0.29 0.62
land type removed 0.97 0.49 0.17 0.18 0.45
evol removed 0.97 0.59 0.14 0.27 0.54
evol removed except div850 0.97 0.73 0.13 0.32 0.66
elev. evolution <500 removed 0.97 0.65 0.12 0.38 0.59
div @ 850,500 only*t 0.97 0.72 0.12 0.24 0.65
rh @ 850,500 only+ 0.97 0.69 0.14 0.27 0.61
tmp @ 850,500 onlyt 0.97 0.78 0.13 0.33 0.68
temp & div @ 850,500 onlyt 0.97 0.71 0.13 0.22 0.63
rh & div @ 850,500 onlyt 0.97 0.71 0.13 0.32 0.64
tmp & rh @ 850,500 onlyt 0.97 0.73 0.13 0.33 0.65
evol @ 850,500 only+t 0.97 0.70 0.12 0.32 0.64
12 hour forecast

all* 0.97 0.62 0.13 0.28 0.56
elevation removed 0.97 0.72 0.13 0.33 0.65
lat/lon removed 0.97 0.81 0.15 0.17 0.67
longitude removed 0.97 0.75 0.14 0.27 0.64
land type removed 0.97 0.57 0.17 0.18 0.51
evol removed 0.97 0.62 0.13 0.25 0.56
evol removed except div850 0.97 0.81 0.13 0.23 0.71
elev. evolution <500 removed 0.97 0.67 0.12 0.22 0.60
div @ 850,500 onlyt+ 0.97 0.74 0.13 0.18 0.65
rh @ 850,500 onlyt 0.97 0.68 0.13 0.24 0.61
tmp @ 850,500 onlyt 0.97 0.81 0.13 0.28 0.71
temp & div @ 850,500 onlyt 0.97 0.72 0.13 0.32 0.64
rh & div @ 850,500 onlyt 0.97 0.73 0.13 0.30 0.65
tmp & rh @ 850,500 onlyt 0.97 0.76 0.13 0.30 0.67
evol @ 850,500 onlyt 0.97 0.76 0.13 0.26 0.68

*This set has a duplicate t0 parameter included.
+These sets have elevation removed



Table 2-2 Final Predictors

NN Predictors

UT of forecast time
At before forecast
Latitude
Longitude
Advected cloud fraction
Advected cloud top temperature
TCF att,

CTT att,

TCF att -1 hour
CTT att,-1 hour
At from forecast
TCF at t-3 hour
CTT at t,-3 hour
At from forecast
TCF at t,-6 hour
CTT att,-6 hour
At from forecast
TCF at t;-12 hour
CTT at t,-12 hour
At from forecast
Clouds/no clouds flag
Relative humidity @ 850 hPa

Relative humidity @ 500 hPa
Velocity Divergence @ 850 hPa

Velocity Divergence @ 500 hPa

TCF at t-24 hours
(Averaged over past 3 days)
CTT at t,-24 hours
(Averaged over past 3 days)

Land type




2.4 NEURAL NETWORK CODE LISTING.

A listing for the complete NN algorithm discussed in Section 2.1 is presented here for reference.
This is a stand alone code that requires a previously calculated training weight set and properly
formatted input data of the type described in Section 2.3. The codes are written in FORTRAN.

C
c

¢ Feed Forward Backpropagation (FFBP) Neural Network (NN)
c

¢ Routines:

c

¢ main main control program

¢ do_forward_pass propagate input activity forward thru network
¢ do_out_forward do output layer, forward pass

¢ do_mid forward do middle layer, forward pass

c display_output display output of network

¢ do_back_pass propagate error activity backward thru network
¢ do_out_error compute output layer errors

¢ do_mid_error compute middle layer errors

¢ adjust_out_wts adjust output layer weights

¢ adjust_mid_wts adjust middle layer weights

¢ check_out_error check to see if network knows all patterns yet
c initialize net do network initialization

¢ randomize wts randomize wts on middle & output layers

¢ read_data file  read input/desired out patterns from data file

c display_mid_wts output the weights on the middle layer neurodes
¢ display_out_wts output the weights on the output layer neurodes
c

LJ Sk

c
¢ MAIN PROGRAM
c

program main
c
¢ COMMON BLOCKS
c

include ‘param.cmn’
include 'wts.cmn'
include 'wts_old.cmn'
include ‘patts.cmn’
include 'errs.cmn’
include ‘errs_old.cmn'
include 'nod_out.cmn'
include 'io.cmn'




¢ OPEN SETUP FILE, INITIALIZE VARIABLES. ETC.

C

C

lun_init =1
lun_forefile = 2
lun_logfile =3
lun_infile =4
lun_wts_in =5
lun_wts_out =7

VECTORS_SEQUENTIAL = 1
IN_SIZE= 1

open(lun_init,file="nn_2mlc.ini' form="formatted")

read(lun_init,*) TRAIN_NETWORK
read(lun_init,*) PREDICTION
read(lun_init,*) IN_SIZE
read(lun_init,*) MID1_SIZE
read(lun_init,*) MID2_SIZE
read(lun_init,*) OUT_SIZE
read(lun_init,*) VECTORS_SEQUENTIAL
read(lun_init,*) VECTORS_RANDOMLY
read(lun_init,*) READ_WTS
read(lun_init,*) RANDOMIZE
read(lun_init,*) BETA

read(lun_init,*) BETA_UP
read(lun_init,*) BETA_UP2
read(lun_init,*) BETA_DN
read(lun_init,*) BETA_DN2
read(lun_init *) ALPHA
read(lun_init,*) AL_UP

read(lun_init,*) AL_UP2
read(lun_init,*) AL._DN
read(lun_init,*) AL_DN2
read(lun_init,*) GAMMA
read(lun_init,*) STANDARD_ERR
read(lun_init,*) NUMSETS

write(*,*) 'Number of sets: ' ."NUMSETS
read(lun_init,*) MAX_ITERATIONS

read(lun_init,'(al4)") infile
read(lun_init,'(al4)") forefile
read(lun_init,'(a14)") logfile
read(lun_init,'(a14)") wts_in
read(lun_init,'(al4)") wts_out

close(lun_init)

¢ INITIALIZE MORE VARIABLES

C

10



T
F
ERR -1

MAXPATS = 100000

PRINT_ERRS =0

PRINT_TO_OUTPUT=0

VALMOD =1.

LEARNED_ALL =F

STANDARD_ERR = OUT_SIZE*STANDARD_ERR
BETA_MAX =10

ALPHA_MAX =10

1
0

C
¢ INITIALIZE NETWORK
c

call initialize_net()

C

¢ SECTION FOR TRAINING NETWORK
C

IF (TRAIN_NETWORK .eq. T) THEN
open(lun_logfile file=logfile form="formatted’)
c

¢ PUT PATTERNS INTO NN MAX_ITERATIONS TIMES
c

do 20 ir=1, MAX_ITERATIONS

do 21 ip=1,numpats
if (VECTORS_RANDOMLY .eq. T) ipatt = rand(0)*numpats + 1
if (ipatt .gt. numpats) ipatt = numpats
if (VECTORS_SEQUENTIAL .eq. T) ipatt = ip

call do_forward_pass(ipatt)
call do_back_pass(ipatt)
patt_err_check = tot_out_error(ipatt)

iteration_count = iteration_count + 1
21 continue

do 22 ipatt=1,numpats
call do_forward_pass(ipatt)
call do_out_error(ipatt)
22 continue

final_err_check_old = final_err_check
call check_out_error()

if (final_err_check .gt. final_err_check_old)BETA=BETA*BETA_DN
if (final_err_check .It. final_err_check_old)BETA=BETA+BETA_UP
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if (BETA .gt. BETA_MAX) BETA = BETA_MAX

if (final_err_check .gt. final_err_check_old)ALPHA=AL.PHA*AL DN
if (final_err_check .1It. final_err_check_old)ALPHA=ALPHA+AL_UP
if (ALPHA .gt. ALPHA_MAX) ALPHA = ALPHA_MAX

err_percent = final_err_check/(numpats*OQUT_SIZE)

if (err_percent .1t. 0.1) then
BETA_DN =BETA_DN?2
BETA_UP=BETA_UP2
AL_UP =AL_UP2
AL_DN =AL_DN2
endif

write(*,100)ir.iteration_count,err_percent, BETA,ALPHA
100  formai(lx,Pass: 'i4,3x.'it: "i9,3x,Err: 'f6.4,3x,'Beta: ',
$ 5.4,3x,'Alpha: 'f5.4)
write(* *)’

if (final_err_check .1t. standard_err*numpats)learned_all=T
if (learned_all .eq. T) goto 99

20 continue
99 continue

C

¢ WRITE OUT FINAL NN WEIGHTS
c

write(*,*)'Posting final weights to file...'
open(lun_wts_out file=wts_out.form="formatted’)
call output_mid1_wts()

call output_mid?2_wts()

call output_out_wts()

close(lun_wts_out)

C

¢ ALLOW OUTPUT NOW TO SEE HOW WELL NN IS DOING
c

PRINT_TO_OUTPUT =T
do 40 ipatt=1 numpats
call do_forward_pass(ipatt)
call do_out_error(ipatt)
40 continue
call check_out_error()
err_percent = final_err_check/(numpats*OUT_SIZE)

write(*,*) Final total error : ',err_percent
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close(lun_logfile)

C

¢ END OF TRAINING SECTION CONTROL BLOCK
c

ENDIF
C
¢ NN ENGINE - PREDICTION SECTION
C

IF (PREDICTION .eq. T) THEN
write(*,*)'Producing prediction ....'
do 50 ipatt=1,numpats
call do_forward_pass(ipatt)
call do_out_error(ipatt)
50 continue
call check_out_error()
err_percent = final_err_check/(numpats*OUT_SIZE)
write(*,*) Final error : ', err_percent

open(lun_forefile. file=forefile form="formatted")

write(lun_forefile,*)((pred_pats(i,j).j=1,O0UT_SIZE),i=1 numpats)
write(lun_forefile,*)((pat_out(i,j), j=1,0UT_SIZE),i=1,numpats)

close(lun_forefile)
write(* ,*)'Prediction complete ...."
c

¢ END OF PREDICTION SECTION CONTROL BLOCK
C

ENDIF

stop
end

C

¢ initialize_net()
¢ Do all the initialization stuff before beginning
c

subroutine initialize_net()

include 'param.cmn’
include ‘io.cmn’
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if READ_WTS .eq. T) then
open(lun_wts_in, file=wts_in form="formatted’)
call read_mid1_wts()
call read_mid2_wts()
call read_out_wts()
close(lun_wts_in)

endif

if RANDOMIZE .eq. T) call randomize_wts(
call read_data_file()
iteration_count = 1

return
end

C

¢ do_forward_pass(ipatt)
¢ control function for the forward pass through the network
c

subroutine do_forward_pass(ipatt)

include ‘param.cmn’

call do_mid1_forward(ipatt) ! process forward pass, middle lyr 1
call do_mid2_forward() ! process forward pass, middle lyr 2
call do_out_forward(ipatt) ! process forward pass, output Iyr

if PRINT_TO_OUTPUT .eq. T) call display_output(ipatt)

return
end

C

¢ do_mid1_forward(ipatt)

¢ process the middle layer's forward pass

¢ The activation of middle layer’s neurode is the weighted
¢ sum of the inputs from the input pattern, with sigmoid

¢ function applied to the inputs.

c

subroutine do_midl_forward(ipatt)
include ‘param.cmn’

include 'wts.cmn’

include 'patts.cmn’

include ‘'nod_out.cmn’

real sum
integer neurode, i

do 10 neurode=1 MID1_SIZE
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sum = 0.0
do 11 i=1,IN_SIZE ! COMPUTE WEIGHTED SUM OF INPUT SIGNALS
sum = sum + mid1_wts(neurode,i)*pat_in(ipatt,i)
11  continue
sum = 1./(1.+exp(-GAMMA*sum))
midl_out(neurode) = sum
10 continue

return
end

C

¢ do_mid2_forward()

¢ process the middle layer's forward pass

¢ The activation of middle layer's neurode is the weighted
¢ sum of the inputs from the input pattern, with sigmoid

¢ function applied to the inputs.

c

subroutine do_mid2_forward()

include ‘param.cmn’
include 'wts.cmn'
include ‘patts.cmn’
include 'nod_out.cmn’

real sum
integer neurode, i

do 10 neurode=1 MID2_SIZE
sum = 0.0
do 11 i=1,MID1_SIZE ! COMPUTE WEIGHTED SUM OF INPUT SIGNALS
sum = sum + mid2_wts(neurode,i)*mid1_out(i)
11  continue
sum = 1./(1.4+exp(-GAMMA*sum))
mid2_out(neurode) = sum
10 continue

return
end

C

¢ do_out_forward()

¢ process the forward pass through the output layer

¢ The activation of the output layer is the weighted sum of
c the inputs (outputs from middle layer), modified by the
¢ sigmoid function.

C

subroutine do_out_forward(ipatt)

include 'param.cmn’
include 'wts.cmn'
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11

include ‘patts.cmn’
include 'nod_out.cmn’

real sum
integer neurode, i

do 10 neurode=1,0UT_SIZE

sum = 0.0

do 11 i=1 MID2_SIZE ! COMPUTE WEIGHTED SUM OF INPUT SIGNALS
sum = sum + out_wts(neurode,i)*mid2_out(i)
continue

sum = 1./(1.+exp(-sum))

out_out(neurode) = sum

pred_pats(ipatt,neurode) = sum

10 continue

C

return
end

¢ display_output(ipatt)

(]

O 00060

Display the actual output vs. the desired output of the network.
Once the training is complete, and the
learned flag set to TRUE,
then display_output sends its output to both the screen
and to a text output file.

subroutine display_output(ipatt)

include 'param.cmn’
include ‘patts.cmn'
include 'nod_out.cmn’
inciude 'errs.cmn’
include 'io.cmn’

integer i

write(lun_logfile *)'patt: *,ipatt
write(lun_logfile,*)'Desired Output:’
write(lun_logfile,100)(pat_out(ipatt,i),i=1,OUT_SIZE)
write(lun_logfile,*)' Actual Output:’
write(lun_logfile,100)(out_out(i),i=1,OUT_SIZE)
write(lun_logfile,*)Error for pattern: °, tot_out_error(ipatt)

100 format(9(f7.5,1x))

C

return
end

¢ do_back_pass(ipatt)
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¢ Process the backward propagation of error through network.
c

subroutine do_back_pass(ipatt)

call do_out_error(ipatt)
call do_mid2_error()

call do_midl_error()

call adjust_out_wts()

call adjust_mid2_wts()

call adjust_mid1l_wts(ipatt)

return
end

C

¢ do_out_error(ipatt)

¢ Compute the error for the output layer neurodes, and current total
C error.

c

subroutine do_out_error(ipatt)

include 'param.cmn’
include ‘patts.cmn’
include 'nod_out.cmn’
include 'errs.cmn’

integer neurode
real  error_neurode,tot_error

tot_error = 0.0

do 10 neurode=1,0UT_SIZE
out_error(neurode) = pat_out(ipatt,neurode) - out_out(neurode)

error_neurode = abs(out_error(neurode))
tot_error = tol_error + error_neurode
10 continue

tot_out_error(ipatt) = tot_error

return
end

C

¢ do_mid2_error()

¢ Compute the error for the middle layer neurodes

¢ This is based on the output errors computed above.
¢ Note that the derivative of the sigmoid f(x) is

¢ f(x)=fx)1 - f(x))

¢ Recall that f(x) is merely the output of the middle
¢ layer neurode on the forward pass.

c
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subroutine do_mid2_error()

include ‘param.cmn’
include 'wts.cmn'
include 'nod_out.cmn’
include 'errs.cmn’

real sum
integer neurode, i

do 10 neurode=1MID2_SIZE
sum = 0.0
do 11i=1,0UT_SIZE
sum = sum + out_wts(i,neurode)*out_error(i)
11 continue

¢ APPLY THE DERIVATIVE OF THE SIGMOID HERE
mid2_error(neurode)=mid2_out(neurode)*
$ (1.-mid2_out(neurode))*sum

10 continue

return
end

c

¢ do_mid1_error(Q)
¢ Compute the error for the middle layer neurodes
¢ This is based on the output errors computed above.
Note that the derivative of the sigmoid f(x) is

f(x) = &)1 - f(x))
Recall that f(x) is merely the output of the middle
layer neurode on the forward pass.

O 0O o000

subroutine do_midl_error()

include 'param.cmn’
include 'wts.cmn’
include 'nod_out.cmn’
include 'errs.cmn’

real sum
integer neurode, i

do 10 neurode=1 MID1_SIZE
sum = 0.0
do 11 i=1, MID2_SIZE
sum = sum + mid2_wts(i,neurode)*mid2_error(i)
11  continue

¢ APPLY THE DERIVATIVE OF THE SIGMOID HERE
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mid1_error(neurode) = mid1_out(neurode)*
$ (1.-mid1_out(neurode))*sum
10 continue

return
end

C

¢ adjust_out_wts()

¢ Adjust the weights of the output layer. The error for the output
¢ layer has been previously propagated back to the middle layer.
¢ Use the Delta Rule with momentum term to adjust the weights.
c

subroutine adjust_out_wts()

include 'param.cmn’
include 'wts.cmn’
inciude 'wts_old.cmn’
include 'nod_out.cmn’
include 'errs.cmn’

integer weight, neurode
real learn.deltaalph

leamm = BETA
alph = ALPHA

do 20 neurode=1,0UT_SIZE
do 21 weight=1,MID2_SIZE
delta =learn*out_error(neurode)*mid2_out(weight)
out_wts(neurode,weight) = out_wts(neurode,weight) + delta +

$ out_wts_mom(neurode,weight)
out_wts_mom(neurode,weight) = alph*(out_wts(neurode,weight) -
$ out_wts_old(neurode,weight))

out_wts_old(neurode,weight) = out_wts(neurode,weight)
21  continue
20 continue

return
end

C

¢ adjust_mid2_wts()

¢ Adjust the middle layer weights using the previously computed errors.
¢ We use the Generalized Delta Rule with momentum term

c

subroutine adjust_mid2_wts()

include ‘param.cmn’
include 'wts.cmn’
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21

include 'wts_old.cmn'
include 'nod_out.cmn’
include 'errs.cmn’

integer weight, neurode
real leamn alph.delta

learn = BETA
alph = ALPHA

do 20 neurode=1 MID2_SIZE
do 21 weight=1 MID1_SIZE
delta = learn*mid2_error(neurode)*mid1_out(weight)
mid2_wts(neurode,weight) = mid2_wts(neurode,weight) + delta +

$ mid2_wts_mom(neurode,weight)
mid2_wts_mom(neurode,weight)=alph*(mid2_wts(neurode ,weight)-
3 mid2_wts_old(neurode,weight))

mid2_wts_old(neurode,weight)=mid2_wts(neurode.weight)
continue

20 continue

C

return
end

¢ adjust_midl_wts()
¢ Adjust the middle layer weights using the previously computed errors.
¢ We use the Generalized Delta Rule with momentum term

C

subroutine adjust_midl _wts(ipatt)

include 'param.cmn'
include ‘patts.cmn’
include 'wts.cmn’
include 'wis_old.cmn’
include 'nod_out.cmn’
include 'errs.cmn’

integer weight, neurode
real learn.alph.delta

learn = BETA
alph = ALPHA

do 20 neurode=1 MID1_SIZE
do 21 weight=1,IN_SIZE
delta = learn*mid1_error(neurode)*pat_in(ipatt,weight)
midl_wts(neurode,weight) = mid1_wts(neurode,weight) + delta +

$ midl_wts_mom(neurode,weight)
midl_wts_mom(neurode,weight)=alph*(mid1_wts(neurode,weight)-
$ mid1_wts_old(neurode,weight))
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mid1l_wts_old(neurode,weight)=midl_wts(neurode,weight)
21  continue
20 continue

return
end

C

¢ check_out_error()

¢ Check to see if the error in the output layer is below

¢ MARGIN*OUT_SIZE for all output patterns. If so, then assume the network
¢ has learned acceptably well. This is simply an arbitrary measure of how

¢ well the network has learned. Many other standards are possible.
c

subroutine check_out_error()

include ‘param.cmn’
include 'errs.cmn’

integer i
final_err check=0.0
do 10 i=1,numpats
final_err_check = final_err_check + tot_out_error(i)

10 continue

retum
end

C

¢ check_out_error_patt()

¢ Check to see if the error in the output layer is below

¢ MARGIN*OUT_SIZE for all output patterns. If so, then assume the network
¢ has learned acceptably well. This is simply an arbitrary measure of how

¢ well the network has learned_many other standards are possible.

c

subroutine check_out_error_patt(ipatt)

include 'param.cmn'
include ‘errs.cmn’

integer result

result =T
if (tot_out_error(ipatt) .ge. standard_err) result = F

leamed = result

return
end
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C

¢ randomize_wts()

¢ Intialize the weights in the middle and output layers to
¢ random values between -0.25..+0.25

c

subroutine randomize_wts()

include 'param.cmn’
include 'wts.cmn’
include 'wts_old.cmn'

integer neurode.i
real value

seed = 10000
value = rand(seed)

do 10 neurode=1 MID1_SIZE
do 11 i=1IN_SIZE
value = rand(0) - 0.5
midl_wts(neurode.i) = value*.8
mid1_wts_old(neurode,i) = value*.8
mid1l_wts_mom(neurode,i) = 0.0
11  continue
10 continue

do 20 neurode=1MID2_SIZE
do 21 i=1,MIDI1_SIZE
value = rand(0) - 0.5
mid2_wts(neurode,i) = value*.8
mid2_wts_old(neurode,i) = value*.8
mid2_wts_mom(neurode,i) = 0.0
21  continue
20 continue

do 30 neurode=1,0UT_SIZE
do 31 i=1,MID2_SIZE
value = rand(0) - 0.5
out_wts(neurode,i) = value*.8
out_wts_old(neurode,i) = value*.8
out_wts_mom(neurode,i) =0.0
31 continue
30 continue

return
end

C

c read_data_file()
¢ Read in the input data file and store the patterns in pat_in
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¢ and pat_out.
c

subroutine read_data_file()

include 'param.cmn’
include ‘patts.cmn’
include ‘io.cmn’

integer youtsize,totsize
integer ipatt

integer tot

integer iset

integer numpats_set

c
¢ NEW SECTION TO OBTAIN SELECTED PARAMETERS FROM INPUT VECTORS
c

integer no_vect_elem

integer elem_ids(47)

integer out_elem_ids(47)

real vect_mask(47)

real vect_in(47)

num_vect_elem = IN_SIZE
num_out_elem = QUT_SIZE

open(lun_infile, file="vectmask.ini', form = 'formatted’)

do ielem = 1, num_vect_elem+num_out_elem
read(lun_infile,*) vect_mask(ielem)

enddo

close(lun_infile)

ielem_cnt= 1
do 9 ielem=1,num_vect_elem
if (vect_mask(ielem) .eq. 1) then
elem_ids(ielem_cnt) = ielem
ielem_cnt = ielem_cnt + 1
endif
9 continue
ielem_cnt = ielem_cnt - 1
write(*,*) ielem_cnt, ' input vector elements flagged for usage’

ioutelem_cnt = 1
do ioutelem=num_vect_elem+1,num_vect_elem+num_out_elem
if (vect_mask(ioutelem) .eq. 1) then
out_elem_ids(ioutelem_cnt) = ioutelem
ioutelem_cnt = ioutelem_cnt + 1
endif
enddo
ioutelem_cnt = ioutelem_cnt - 1
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C

write(*,*) ioutelem_cnt, ' output elements flagged for usage'

¢ READ TRAINING OR FORECAST FILE

C

111

11

10

c

open(lun_infile, file=infile, form = ‘formatted’)
write(*,*)""
patt_cnt= 1

do 10 iset=1, NUMSETS
read(lun_infile *)totsize,youtsize numpats_set

write(*,*)Input vector size : ' totsize
write(* ,*)'Output vector size : ',youtsize
write(*,*)'Total set size : ',numpats_set

do 11 ipatt=1,numpats_set
read(lun_infile,*) (vect_in(tot),tot=1 totsize+youtsize)

do 111 ielem=1 jelem_cnt
pat_in(patt_cnt.ielem) = vect_in(elem_ids(ielem))
continue
do ioutelem=1ioutelem_cnt
pat_out(patt_cnt.ioutelem) = vect_in(out_elem_ids(ioutelem))

enddo

patt_cnt = patt_cnt + 1
continue

continue ! END OF SET LOOP

totsize = ielem_cnt
numpats = patt_cnt - 1

write(*,*)'Total # vectors : '.,numpats
write(* *)""

close(lun_infile)

return
end

¢ display_mid1_wts()
¢ Display the weights on the middle layer neurodes

c

subroutine display_midl_wts()
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include 'param.cmn’
include 'wts.cmn'
include ‘io.cmn’

integer neurode, weight
write(lun_logfile,*)'Weights of Middle Layer neurodes: '

do 10 neurode=1 MID1_SIZE
write(lun_logfile,*)Mid Neurode # '.;neurode
do 11 weight=1,IN_SIZE
write(lun_logfile,*) mid1_wts(neurode,weight)
11  continue
10 continue

return
end

C

c display_mid2_wtsQ
¢ Display the weights on the middle layer neurodes
c

subroutine display_mid2_wts()

include 'param.cmn’
include 'wts.cmn’
include 'io.cmn’

integer neurode, weight
write(lun_logfile,*)'Weights of Middle Layer 2 neurodes: '

do 10 neurode=1 MID2_SIZE
write(lun_logfile,*)'Mid Neurode # ,neurode
do 11 weight=1 MID1_SIZE
write(lun_logfile,*) mid2_wts(neurode,weight)
11  continue
10 continue

retum
end

c

¢ display_out_wits(Q
¢ Display the weights on the middle layer neurodes
c

subroutine display_out_wts()

include 'param.cmn’
include ‘wts.cmn'
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include 'io.cmn’

integer neurode, weight

write(lun_logfile,*)'Weights of Output Layer neurodes:

do 10 neurode=1,0UT_SIZE
write(lun_logfile,*)'Mid Neurode # ',neurode
do 11 weight=1,MID2_SIZE
write(lun_logfile,*) out_wts(neurode , weight)
11  continue
10 continue

return
end

C

¢ output_midl_wis()
c

subroutine output_midl _wts()
include 'param.cmn’

include 'wts.cmn’

include 'io.cmn’

integer mid1_siz,in_siz

midl_siz = MID1_SIZE
in_siz = IN_SIZE

write(lun_wts_out,*) mid1_siz
write(lun_wts_out,*) in_siz

write(lun_wts_out,*) midl_wts

return
end

C

¢ output_mid2_wts()
c

subroutine output_mid2_wts()
include 'param.cmn’

include 'wts.cmn’

include 'io.cmn'

integer midl_siz,mid2_siz

midl_siz = MID1_SIZE
mid2_siz = MID2_SIZE
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C

write(lun_wts_out,*) mid2_siz
write(lun_wts_out,*) mid1_siz
write(lun_wts_out,*) mid2_wts

retum
end

¢ output_out_wts()

C

C

subroutine output_out_wts()

include 'param.cmn’
include 'wts.cmn’
include ‘io.cmn’

integer out_siz,mid2_siz

out_siz = OQUT_SIZE
mid2_siz = MID2_SIZE

write(lun_wts_out,*) out_siz
write(lun_wts_out,*) mid2_siz
write(lun_wts_out,*) out_wts

return
end

¢ read_midl_wts()

C

C

subroutine read_midl_wts()

include ‘param.cmn’
include 'wts.cmn’
include 'io.cmn'

integer mid1_siz,in_siz
read(lun_wts_in,*) mid1_siz

read(lun_wts_in,*) in_siz
read(lun_wts_in,*) mid1l_wts

return
end

¢ read_mid2_wts()
c

subroutine read_mid2_wts()
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include 'param.cmn'
include 'wts.cmn’
include 'io.cmn’

integer mid1_siz,mid2_siz

read(lun_wts_in,*) mid2_siz
read(lun_wts_in,*) mid1_siz
read(lun_wts_in,*) mid2_wts

return
end
c
c read_out_wts()
c
subroutine read_out_wts()
include 'param.cmn’
include 'wts.cmn’
include 'io.cmn’
integer out_siz.mid2_siz
read(lun_wts_in,*) out_siz
read(lun_wts_in,*) mid2_siz
read(lun_wts_in,*) out_wts
return
end
C errs.cmn
real midl_error,mid2_error,out_error
common /errors/ midl_error(80),mid2_error(80),out_error(32),
$ tot_out_error(100000),.final_err_check,
3 final_err_check_old,patt_err_check,
$ patt_err_check_old
C io.cmn

integer lun_logfile
integer lun_forefile
integer lun_infile
integer lun_wts_in
integer lun_wts_out
character*20 logfile
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character*20 forefile
character*20 infile

character*20 wts_in
character*20 wts_out

common /io/ lun_forefile lun_infile lun_wts_in,
$ lun_wts_out,lun_logfile,
$ logfile forefile,outfile,infile,wts_in,wts_out

C nod_out.cmn
real mid1_out,mid2_out,out_out

common /node_outputs/ mid1_out(80),mid2_out(80),out_out(32)
C param.cmn

integer T

integer F

integer ERR

integer MAXPATS

integer NUMSETS

integer IN_SIZE

integer MID1_SIZE

integer MID2_SIZE

integer OUT_SIZE

real MARGIN

integer MAX_TTERATIONS
integer MAX_PATT_ITERATIONS
real STANDARD_ER

integer VECTORS_SEQUENTIAL
integer VECTORS_RANDOMLY
integer EPOCH_TRAINING
integer READ_WTS

integer RANDOMIZE

integer PRINT_ERRS

integer iteration_count ! number of passes thru network so far
integer numpats ! number of patterns in data file

integer learned ! flag_if TRUE, network has a pattern
integer learned_all ! flag_if TRUE, network has learned all patterns
real BETA

real ALPHA

real GAMMA

integer PRINT_TO_OUTPUT

real standard_err

integer ir

real valflt

integer valint

real valmod

real new_error
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real old_error
integer patt_cnt

integer seed

common /parameters/ T,F ERR, MAXPATS NUMSETS,IN_SIZEMID1_SIZE,
MID2_SIZE,OUT_SIZE MARGIN MAX_ITERATIONS,
MAX_PATT_ITERATIONS,STANDARD_ER,
VECTORS_SEQUENTIAL ,VECTORS_RANDOMLY,
EPOCH_TRAINING READ_WTS RANDOMIZE,
PRINT_ERRS  iteration_count,numpats,

learned BETA ALPHA,GAMMA PRINT_TO_OUTPUT,
standard_err.ir,valflt,valint,vaimod,
leamed_all,new_error,old_error,patt_cnt,

seed

PO AP

patts.cmn

common /patterns/ pat_in(100000,200),

$ pat_out(100000,32),

$ pred_pats(100000,32)

wis.cmn

real midl_wts,mid]l_wts_mom

real mid2_wts,mid2_wis_mom

real out_wts ,out_wts_mom

common /weights/ midl_wts(80,200),mid1_wts_mom(80,200),
$ mid2_wts(80, 80),mid2_wts_mom(80, 80),
S out_wts (32, 80),out_wts_mom (32, 80)
wts_old.cmn

real mid1_wts_old,mid2_wts_old,out_wts_old

common /weights_old/ mid1_wts_old(80,200),mid2_wts_old(80,80),
$ out_wts_old(32,80)

errs_old.cmn
real mid1l_error_old,mid2_error_old.out_error_old

common /errors_old/ mid1_error_old(80),mid2_error_old(80),
$ out_error_old(32)
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SECTION 3
ADVECTION ALGORITHM

The cloud advection algorithm went through several incarnations before it was finalized. The
earliest approaches were purposely simple:

e Wind vectors were estimated for the previous hour.

e Forecast time wind vectors were obtained by simply multiplying the 1 hour vectors by the
forecast time.

¢ Clouds were moved based upon the vectors.

It was hoped that the NN would correct for poor wind estimates. Instead, it was found that poor
wind estimates (when advection actually was the primary process) degraded the performance of
the persistence and evolution inputs. Based upon this, the final advection algorithm contained
two improvements: (1) a progressive wind vector advection algorithm replaced the simple
single wind vector prediction, and (2) a smoothing algorithm was developed for the wind field.

3.1 PROGRESSIVE VECTOR ADVECTION.

The previously employed advection algorithm was simple and efficient for short-term forecasts
or wind fields with little curvature. When significant curvature exists, as occurs in flow about a
major high or low pressure system, the simple linear approach produces extremely poor results.
To rectify this a progressive vector advection module was created.

The clouds at a mesh point are advected using the following algorithm illustrated in Figure 3-1:

B=4XP‘«"'

Figure 3-1. In cases of significant curvature to the wind field, the progressive vector method (A) retains
more accuracy than the linear extra-polation method (B).
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¢ The wind field for the most recent hour is assumed to be the best estimate of the wind field
in the future. '

® The clouds at a mesh point are advected forward 1 hour in time to a new mesh point using
the wind vector at the current point.

® The wind vector at the new point is used to advect the clouds forward an additional 1 hour in
time.

* The previous step is repeated until the desired forecast time is attained.

This procedure better retains the overall shape of the cloud formations as long as the current
wind field accurately reflects the future wind field and the clouds are predominately advected (as
opposed to evolved).

3.2 WIND VECTOR SMOOTHING.

The correlation analysis results in an inconsistent wind field, e. g. the field is not smooth and
vectors often cross. To help alleviate (but not completely eliminate this problem) a smoothing
process has been added to the wind field estimate. We have advection data defined on a 2D grid
with lots of gaps — cloudless grid points with no good advection estimate. A weighted least
squares smoother interpolator was developed.

The input data is on a grid of dimensions 7, x n, , with grid points at positions x =12,...,n, and
y=12,...,n,. The input data consists of three pieces of data for each grid point: u(x, y) is the x
component of the advection, v(x,y) is the y component, and w(x,y) is the weight. w is con-
structed from the correlation data: for good pixels, w is the correlation value (between O and 1 -

no negative values); for bad (flagged) pixels, w is set to zero. For flagged pixels we should also
set u and v to zero.

The data is fit by a set of smooth 2D basis functions. We’ll specify the basis functions later, but
for now let n, be the number of basis functions used, and the basis functions are B,(x,y) for
b=12,...n,, defined for all x and y. The smoothed advection functions are linear superpositions

of the basis functions, with some coefficients:

Mmoo (5,9) = Y 0,B, (x,7) 3.1)
b=1
vsmoa!ll (x’y) = beBb (x’y) (3°2)

b=1
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The coefficients are determined by doing a weighted fit to the advection data. This is the stan-
dard linear least squares fitting result, with weights. For the u data, define the variance

ZZW(X, e, ) = oo W) - (3.3)

n n’y x=1 y=1

Make the following definitions for the scalar UU, the vector BU, and the n, X n, matrix BB:

2w(x Yu(x,y)’ (3.4)
BU, =——Y w(x,y)B,(x, y)u(x,y) (3.5)
BB,, =—— Y w(x,y)B,(x.y)B,(x,y) (3.6)

With these and some math, the variance is

2 _
o, uu - 2ZabBUb+ > [a,a b'BBbb 3.7

b b,b’

Minimizing this with respect to g, gives a solution in terms of the inverse of the matrix BB:

a,= Y BB -BU, , (3.8)
< .
and with this the variance is
0. =UU-Y BU,-BB™w-BU, . (3.9)
bb’

The variance is useful to calculate, because it gives us a feeling for how well we're fitting the
data.

If the basis functions were orthogonal, so that

! Y w(x,)B,(x,y)By(x,y) (3.10)

'ty xy

BB, =
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was zero for b # b’, then the matrix would be diagonal and the inversion trivial. However, be-
cause of the arbitrary weights w in the equation, it is impossible to choose orthogonal basis

functions. We will just choose simple basis functions, and have to live with the matrix inver-
sion.

Figures 3-2 and 3-3 show an example calculation for the Mediterranean wind field. First, the
north and east components of the wind field are estimated for individual cloudy pixels (Figures
3-2a and c). These are then smoothed and interpolated to produce the wind field used for ad-
vection (Figures 3-2b and d). The results of the advection are shown in Figure 3-3. Here, the
original (T) clouds are advected 12 hours based upon the old and the new smoothed T, wind
field. The results are compared to truth 12 hours later. Both approaches suffer from the fact that
the cloud motion is not dominated by advection throughout the region; the clouds over southern
Europe (to the left) are not moving but are evolving. Over northern Africa where advection is
more dominant, the new model provides a better advection only forecast.

3.3 ALGORITHM LISTINGS.

Listing for the progressive vector advection discussed in Section 3.1 and the wind vector
smoothing discussed in Section 3.2 are presented here for reference. These are algorithm codes
and may require an appropriate driver for data input and output. The codes are written in IDL.

3.3.1 Progressive Vector Advection Listing.
Two routines are listed here. The first, rurv, calculates the raw wind vectors and flags for a

given set of successive one hour cloud images. The second, correlat, simply calculates the
correlation coefficient between two images.
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Figure 3-2. Cloud advection calculation using a 4" order fit for the EMDA.
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New Method
(order 4)

New Method
(order 6)

Truth

Figure 3-3. Cloud advection results.

The routine rurv is basically divided into two parts. The first part identifies those pixels that are
eligible for vector estimation and flags those that are not. The second part uses a standard
correlation process to calculate one hour wind vectors from the unflagged pixels.
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.........................................................................................................

9992999929929999999999999299999979999293999999399727999599993999999999279999999395999999979999992933379%)

sroutine rurv

; Calculate advection velocity

; Dimensions:

;  Correlation window  (current image) Ni x Ni where Ni =2n+1

;  Correlation test area (earlier image) Nm x Nm where Nm = 4n+1
; =2m+1

.........................................................................................................

rurvfilename = string(t0day tOhour.format="(i2.2,"-",i2.2,".rurv")")
flagfilename = string(tOday,tOhour,format="(i2.2,"-",i2.2,".flag")")
irurvfile=0

iflagfile=0

junk = findfile(rurvfilename,count=irurvfile)

junk = findfile(flagfilename,count=iflagfile)

n=15

moffset =7

print, n="n

m = n + moffset

ni=2*n+1

nm = 2*m+1

no = 2*moffset+1

f = bytarr(nm,nm)

w = bytarr(ni,ni)

1 = fltarr(no,no)

cv = fltarr(no,no)

¢0 = reform(c0,imag_x,imag_y)
cl = reform(c1,imag_x,imag_y)
toofar = 5.

advectflags = fltarr(imag_x,imag_y)

ru = intarr(imag_x,imag_y)
v = intarr(imag_x.imag_y)

79773979779992999333)

; Calculation correlation offsets

999993997999932999933

if irurvfile eq O or iflagfile eq O then begin
print, Begining advection calculation’

for xc = m,imag_x-1-m do begin
for yc = m,imag_y-1-m do begin
if cO(xc,yc) eq O then goto, j3

w = cO(xc-n:xc+n,yc-n:yc+n)

f = cl(xc-m:xc+m,yc-m:yc+m)

for i = 0,2*moffset do begin
for j = 0,2*moffset do begin
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CORRELAT, w, f(i:i+2*n,j:j+2*n), cor, cov

1(i,j) = cor
cv(i,j) = cov
endfor
endfor

rmx = max(r k)
ri=k mod no

1j = k/no
i = xc-moffset + ri ; (i,j) is the point in c1 (earlier) that
j = yc-moffset + 1j ; best correlates with (xc,yc) in c0 (current)

; new as of 24 May 1996
advectflags(xc,yc) = rmx

; Check for bad points or unrealistic displacements

if cv(k) 1t 500. then begin
advectflags(xc,yc) = 0.
goto, j3

endif

if rmx 1t .3 then begin
advectflags(xc,yc) = 0.
goto, j3

endif

if abs(xc-i) gt toofar or abs(yc-j) gt toofar then begin
advectflags(xc,yc) = 0.
goto, j3

endif

; Calculate wind vectors

if advectflags(xc,yc) eq 0. then begin
ru(xc,yc) =0
rv(xc.yc)=0
endif else begin
ru(xc,yc) = xc-i
v(xc,yc) = yc-j

endelse
j3:
endfor
print, FORMAT='(" .",$)'
endfor
print,"

print,'End of correlation’
; Perform housekeeping
junk = where(advectflags ne 0,njunk)

print,' Number of non-zero weights: ';njunk
junk = where(cO ne 0,njunk)
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print, Total cloudy pixels: ",;njunk
junk = where(cO(m:imag_x-1-mm:imag y-1-m) ne 0,njunk)
print,'Cloudy pixels in correlation area: 'njunk

; Store the north-south and east-west vectors -- ru and rv — and flags - advectflags
openw, 2, rurvfilename
writeu, 2, ru
writeu, 2, 1v
close,2

openw, 2, flagfilename
writeu, 2, advectflags
close,2
endif else begin
print,Reading in previously calculated ru/rv and flags'
openr,1, rurvfilename
readu,1,ru
readu,l.rv
close,1

openr,l flagfilename
readu, 1,advectflags
close,1

endelse

PRO CORRELAT,X,Y,COR, COV
; Correlation and covariance subroutine

on_error,2 ; Retumn to caller if an error occurs.

; Means
nx = n_elements(x)
xmean = total(x) / nx
ymean = total(y) / nx

; Deviations
XX = X - Xmean
yy =Y - ymean
tt = total(xx*yy)
tx = total(xx/2)
ty = total(yy2)

; Correlation
if x eq 0 or ty eq O then cor = 0. else cor = tt/ sqrt(tx*ty)

; Covariance
cov=tt/(nx-1)

return
end
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3.3.2 Advection Smoothing Listing.

Two routines are listed here. The first, vector_smoothing utilizes the ru, rv and flags output
from Section 3.3.1 to calculate fitting coefficients for a smooth wind field according to the
algorithm described in detail in Section 3.2. The second, rurv_smoothed, calculates the
complete, smoothed wind vector field given a set of smoothing coefficients.

; routine vector_smoothing
; dmc 28 May 1996
; new smoothing/interpolating rurv section
print,Reading in previously calculated ru/rv and flags'
openr, 1 rurvfilename
readu,1,ru
readu,1,rv
close,1

openr, 1 flagfilename
readu,1,advectflags
close,1

endelse

print,'Begin smoothing/interpolating of ru/rv'
nb=(mp+1)*(np+2)/2
ic = intarr(nb)
jc=ic
print,Np: ".np
print,'Nb: '.,nb

print,'Creating Ib and Jb'
b=0
fori= 0, np do begin
for j =0, np - i do begin
icb)=1i
jc®) =j
b=b+1
endfor
endfor
print,'Tb'
print.ic
print.'Jb’
print,jc

wm=0D

vw=0.D

bu = dblarr(nb)
bv=bu

bb = dblarr(nb,nb)
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badflag = .05

advectflags(0,0:imag_y-1) = badflag
advectflags(imag_x-1,0:imag_y-1) = badflag
advectflags(0:imag_x-1,0) = badflag
advectflags(0:imag_x-1,imag_y-1) = badflag

print,'Creating UU, VV, BU, BV, BB'

snx = dblarr(2*np+1)
sny = snx
snx(0) =np
sny(0) =np
fori=1, 2*np do begin
for j= 0, imag_x-1 do begin
x = double(j)
if j eq O then x = double(-50)
if j eq imag_x-1 then x = double(j+50)
snx(i) = snx(i) + (x/double(pixelscale)) i
endfor
for j = 0, imag_y-1 do begin
y = double(j)
if j eq O then y = double(-50)
if j eq imag_y-1 then y = double(j+50)
sny(i) = sny(i) + (y/double(pixelscale)) i
endfor
endfor

fori= 0L, long(imag x-1) do begin
for j = OL, long(imag_y-1) do begin

if advectflags(i,j) gt O. then begin
x = double(i)

if i eq O then x = double(-50)

if i eq imag_x-1 then x = double(i+50)
x = x/double(pixelscale)

y = double(j)

if j eq O then y = double(-50)

if j eq imag_y-1 then y = double(j+50)
y = y/double(pixelscale)

uu = uu + advectflags(i,j) * double(ru(i,j))*2.
vv = vv + advectflags(i,j) * double(rv(i,j))*2.
for bi = 0, nb-1 do begin
wxibyjb = double(advectflags(i.j)) * x*ong(ic(bi)) * y*ong(jc(bi))
bu(bi) = bu(bi) + double(ru(i,j)) * wxibyjb
bv(bi) = bv(bi) + double(rv(i,j)) * wxibyjb
endfor
endif
endfor
endfor
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mostflag = 0.
fori=0L, long(imag_x-1) do begin
for j = OL, long(imag_y-1) do begin

if advectflags(i,j) gt mostflag then begin
x = double(i)
if i eq O then x = double(-50)
if i eq imag_x-1 then x = double(i+50)
x = x/double(pixelscale)

y = double(j)

if j eq 0 then y = double(-50)

if j eq imag_y-1 then y = double(j+50)
y = y/double(pixelscale)

af = advectflags(i,j) - mostflag

for bi = 0, nb-1 do begin

for bj = 0, bi do begin
bb(bi,bj) = bb(bi,bj) + double(af) * xAlong(ic(bi)+ic(bj)) *
yMong(je(bi)+jc(bj))

endfor

endfor

endif

endfor
endfor

for bi = 0, nb-1 do begin
for bj = 0, bi do begin
bb(bi,bj) = bb(bi,bj) + mostflag*snx(ic(bi)}+ic(bj))*sny(jc(bi)+jc(bj))
endfor
endfor

for bi = 0, nb-2 do begin
for bj = bi+1, nb-1 do begin
bb(bi,bj) = bb(bj,bi)
endfor
endfor

nrml = total(advectflags)
uu = uu / double(nrmi)
vv = vv / double(nrml)
bu = bu / double(nrml)
bv = bv / double(nrml)
bb = bb / double(nrml)

status = 0

print,'Inverting BB’

bbinv = invert(bb,status.double=1)

if status eq O then print,'Inversion successful’
if status eq 1 then begin

42



print, Inversion failed, singular matrix’'
retall
endif

if status eq 2 then print, Inversion completed with loss of accuracy’

acoef = dblarr(nb)
beoef = acoef
sigmax2 = uu
sigmay2 = vv

fori= 0, nb-1 do begin
for j = 0, nb-1 do begin
acoef(i) = acoef(i) + bbinv(i,j)*bu(j)
beoef(i) = beoef(i) + bbinv(i,j)*bv(j)
sigmax2 = sigmax2 - bu(i)*bbinv(i,j)*bu(j)
sigmay?2 = sigmay?2 - bv(i)*bbinv(i,j)*bv(j)
endfor
endfor
print,’X Var = " sigmax2
print,'Y Var = ",sigmay2
print,'acoef = ',acoef
print,’bcoef = ',bcoef

; create a smoothed ru/rv for comparison purposes only

rus = dblarr(imag_x,imag_y)
VS =rus
for i = 0,imag_x-1 do begin
for j = 0,imag_y-1 do begin
x = double(i)
y = double(j)
rus(i.j) = rurv_smoothed(acoef.x,y ic.jc,double(pixelscale))
rvs(i,j) = rurv_smoothed(bcoef x,y,ic jc,double(pixelscale))
endfor :
endfor

rurvsfilename = string(tOday,tOhour,format="(12.2,"-" i2.2," rurvs")")
openw, 2, rurvsfilename
writeu, 2, rus
writeu, 2, rvs
close,2

function rurv_smoothed, aa,xx,yy,iib,jjb,pixelscale

; dmc 28 May 1996
; return smoothed ru/rv

retval =0.D
n = n_elements(aa)
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sxx = xx / pixelscale
syy = yy / pixelscale
fori=0, n-1 do begin
retval = retval + aa(i)*sxx/iib(i) *syyAjjb(i)
endfor

return, retval
end



SECTION 4
PERSISTENCE ALGORITHM

Persistence is the tendency of weather to change slowly or to predictably repeat itself after some
time interval. A forecast that merely persists current weather is usually the best short-term (0 to
3 hours) predictor. Some current tropical forecast models rely solely on simple persistence and a
variation of it, diurnal persistence. Analyses by Salby, et al. (1991) indicate that a better persis-
tence forecast might be obtained by including a more complete time history of cloud behavior.
In particular, Salby, et al. noted strong regionally-dependent semi-diurnal and 4-day cycles asso-

ciated with easterly waves in the tropics. A cloud history function that spans at least four days
might improve forecasts.

The dominance of persistence in the SERCAA data areas is best represented by power spectral
analysis. A complete description of the analysis is presented in Poehls, Crandall, O’Rourke and
Heikes (1997). The resuits of the spectral analysis for EASA March 1993 tropical and mid-
latitude ocean and land show a definite diurnal cycle over tropical land areas. No trends of any
SOrt are apparent over ocean areas or at temperate latitudes. In fact, with the exception of the di-
urnal peaks, the spectra are representative of a white noise process with a very long term trend
superimposed. The results for layers 3 and 4 represent pure white noise processes. These results

do not preclude the presence of longer period cycles but more likely reflect poor resolution of
the lower cloud layers by the SERCAA nephanalysis.

The proposed persistence modeling approach must be simplified based upon the above resuits.
The proposed approach called for an auto-regressive model using a 6-day time series to capture
the easterly wave 4-day cycle. The limited data supplied by DSWA clearly does not support
such a model. Limited data also precludes model dependence upon geographic region and time

of year. Given these constraints a simpler approach to a persistence model was adopted that only
includes a 12 hour cloud history and an average diurnal input.

The 12 hour cloud history is simply input by including the current time cloud characterization
along with a cloud characterization for 1, 3, 6, and 12 hours past. This data is meant to establish
the near-time trend in cloud parameters.

The diurnal cycle in cloud parameters is input by averaging the cloud parameters from 24, 48,
and 72 hours before the forecast time. This approach appears, and is, simple but was chosen for
its robustness. The diurnal input can be averaged in several different ways and still be input. An
adaptive recursive filter with a three day weight is an obvious choice for an operational system
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but requires more data than was available to this analysis. The choice of weighting should be
based upon information available upon longer term weather trends. This analysis used a simple
three day average. A semi-diurnal or 4 day cycle can be input instead of the diurnal input.

Table 4-1 summarizes both the minimal and normal data requirements for the persistence algo-
rithm. The minimum requirements refer to data requirements necessary for a cold start. There-

fore the model can be started with only the previous day’s data. Normal operation requires three
previous days of data.

Table 4-1. Persistence model data requirements.

Minimum ‘
Requirements Normal Requirements
t, t,
t, - 1 (hours) t, - 1 (hours)
t,-3 t,-3
t,-6 t,-6
t,- 12 t,-12
torocas = 24 Loroces - @V (24, 48, 72)

Three quantities are input for each of the times (except diurnal) in Table 4-1. For each identified
layer of clouds these include: (1) time delay from t.; (2) cloud fraction at the time delay; (3)
cloud top temperature at the time delay.



SECTION 5
EVOLUTION ALGORITHM

Like persistence, the evolution algorithm depends on local characteristics such as topography,
geography, latitude and time-of-day, but whereas the persistence and advection algorithms
merely extrapolate cloud behavior in time and space, the evolution algorithm exploits atmos-
pheric dynamics to predict clouds by engaging the output of a Numerical Weather Prediction
(NWP) model. Since the military intends to consolidate all NWP functions under the Fleet
Numerical Meteorological and Oceanography Center (FNMOC), and since NOGAPS is the
Navy's global forecast model, it is likely that NOGAPS data will be the source of NWP data in
future AF cloud forecast systems. Therefore, the decision was made to rely exclusively on
NOGAPS as the source for NWP data.

Since NWP models generally do not predict clouds directly, it is necessary to relate the model
output data to the cloud fields. The standard procedure for doing this is termed Model Output
Statistics (MOS). The first step in the MOS approach is to define a set of predictors based on
NWP forecast data. Predictors are not limited to NWP data and may include, for example, the
current observed cloud fields. The predictors are then related to the forecast clouds
(predictands) by means of a regression analysis on historical data. Our approach is similar ex-
cept that we use a NN to relate predictors to predictands. The advantage of the NN approach is
that possible nonlinear and cross-product relationships between predictors are automatically
ferreted out by the NN to produce a better estimate of the predictand. The predictors are drawn
from a pool of potential predictors that include elemental and derived variables based on
NOGAPS data.

There is a large disparity in the resolutions of predictors based on NOGAPS data and predic-
tands based on SERCAA data. NOGAPS provides a global analysis and a 12-hour forecast
twice daily at 00 and 12 Z on a 2.5 X 2.5 degree latitude/longitude grid. The resolution at 60° N
is 139 km, decreasing to 278 km at the equator. In contrast, SERCAA data is available hourly
(nominally) and the resolution of 16th-mesh SERCAA data at 60° N is 23.8 km, increasing
toward the equator. The current NOGAPS operational model is higher resolution (0.75 x 0.75

degree) but unfortunately no archived data is available for the 1993 and 1994 times correspond-
ing to the SERCAA data sets.

Table 5-1 shows the variables considered in the search for cloud field predictors. The first 6
variables are elemental NOGAPS model output data. The remaining variables, beginning with
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divergence, are derived from the elemental variables. The height variable refers to the height of
the pressure (hPa) surface. All variables, other than MSL pressure and surface (SFC) tempera-
ture, are defined on pressure surfaces listed across the top to the table. Vapor pressure (and thus
relative humidity) is available only to 300 hPa. Divergence and vorticity are associated with
vertical motion in the atmosphere at mid- to upper-latitudes and therefore likely to be correlated
with clouds. Relative humidity is obviously linked with cloudiness. Temperature advection,
vorticity advection, wind speed, and wind shear are often associated with developing storm sys-

tems. Temperature difference and thickness between pressure surfaces are measures of atmos-
pheric stability.

Table 5-1. Evolution module predictors.”

HEIGHT
MSL|SFC|1000| 850 | 700 | 500 | 400 | 300 | 200 | 150 | 100 50 | 70 | 20 | 30 | 10 | 925

PREDICTOR

PRESSURE
HEIGHT
TEMPERATURE
VAPOR PRES
ZONAL VEL
MERIDNL VEL
DIVERGENCE
VORTICITY
REL HUMID
TEMP ADV
VORTICITY ADV
THICKNESS
WIND SPEED
WIND SHEAR
TEMP DIFF

o Blocked area indicate the heights for which predictor data is available.
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Each predictor listed in Table 5-1 is used in three different ways. First, we simply take the pre-
dictor defined by the 12-hour forecast as it stands. Second, we subtract the zonal average from
the 12-hour forecast value. Last, we define a trend based on the predictor at forecast time and its
12-hour forecast value. All calculations are performed on the NOGAPS 2.5 X 2.5 degree grid
and interpolated to the SERCAA 16th-mesh grid. Predictors are only compared to total cloud
fraction and no attempt is made to discriminate predictors as a function of cloud layer, height,
geography, or latitude zone. The 3 forms of 15 predictors at 17 heights result in pool of 618
potential predictors (not all variables are available at all heights).

A matrix correlation between predictor and predictand identified the predictors that showed the
highest degree of association with the predictands. The best correlated predictors produced by
this analysis significantly differed from those ranked high based on the contingency table.

Visual comparisons of predictor and predictand in both cases led us to choose correlation as the
best measure of association.

The correlation between predictor and predictand was then calculated for all times in each data
set. The absolute values of correlation were averaged and ranked. Predictors that were related
were eliminated to reduce redundancy. For example, if vapor pressure and relative humidity at a
given height were both found to be highly correlated with total cloud fraction, then only the
higher ranked predictor was kept. Similarly, only the higher ranked zonal wind or total wind
speed was kept, since the zonal wind vector usually accounts for most of the wind speed magni-
tude. Also, only the higher ranked fundamental variable or its zonal perturbation was kept, not
both. Table 5-2 shows the 25 top-ranked predictors for the March and July EASA data sets.

Once the best predictors were identified, a set of vectors was generated for NN training. Each
training vector contains 37 input and 16 output elements. The input elements consists of
predictors (25), current cloud fraction fields (4), elevation (1), time-of-day (2), latitude (1), -
longitude (2) and terrain slope (2). The output elements are 4 cloud fraction fields at 3, 6, 9, and
12 hours (16). The 25 top-ranked predictors were first calculated on the 2.5 X 2.5 degree
NOGAPS grid and then interpolated to the 16th-mesh SERCAA grid. Predictors were selected
from 500 random locations within the region for each time in the data set. The times used for
training are determined by the NWP forecast cycle. Only times where NWP data is available at
the forecast time (Figure 5-1a) are used. The model has not been tested for times where NWP
data is not synchronized with the forecast (Figure 5-1b). The last 12-hour period in the data set
encompassing a NWP forecast cycle is reserved for validation. There are typically 15 times in
each data set, excluding the last 12-hour period, where NWP data is synchronized with the
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forecast time. As a result, the training set for each data set consists of about 7500 (500 x 15)
training vectors.

Table 5-2. 25 top-ranked predictors for EASA data sets.

MARCH JULY
400 hPa  VAPP TREND 400 hPa  VAPP
700 hPa  VOR 500 hPa RH
850 hPa  VOR 300 hPa  VAPP
500 hPa SPEED 850 hPa U_GRD

300 hPa SPEED 925

700 hPa SPEED 700

200 hPa SPEED 1000

400 hPa SPEED 700

700 hPa SHEAR 500

100 hPa T_DIF 300

925 hPa VOR 850 hPa SHEAR

150 hPa SPEED 400 hPa VAPP TREND

100 hPa SHEAR 200

500 hPa VAPP TREND 400

50 hPa T_DIF 925
850
850
400

hPa T_DIF TREND

10 hPa U_GRD - TREND hPa HGT -
700 hPa RH TREND hPa RH
200 hPa T_DIF - TREND hPa U_GRD
500 hPa VOR 1000 hPa HGT -
300 hPa  THICK TREND 0 MSL PRES -
300 hPa T™MP TREND 10 hPa U_GRD TREND
1000 hPa VOR 925 hPa DIV -
400 hPa TMP TREND 1000 hPa DIV -
850 hPa VOR TREND 700 hPa HGT -

850 hPa

X
1]
=1
|
g
=
R
©
c
7}
X
o
|
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a.

NWP/CLOUD
INPUT
l @ FORECAST (HR) s
0 3 6 9 12
[1 | 1 || 1
1 I 1 i 1
0 12
0 TIME (UTC)
b.
NWP  CLOUD
INPUT  INPUT
l ‘ G FORECAST (HR) sy
0 3 6 9 12
] | i 1 1 L 1
] 1 l | | 1 ) 1
00 TIME (UTC) 12

Figure 5-1. Evolution data feed: (a) forecast cycle tested in the current model configuration
(b) example of another forecast cycle the model must eventually handie.

?
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SECTION 6
SKILL SCORE ALGORITHMS

Skill scores provide a quantitative measure of model performance. Skill scores enable the
comparison of forecast models based on alternate techniques and provide a means of measuring
the effect of incremental improvements in the same model. The skill scores we have opted to use
are the Equitable Skill Score (ESS), the 20/20 Score, and the Brier Score. We also look at the
matrix correlation, global bias between forecast and observation, and forecast and observed
sharpness. Sharpness is not strictly a performance statistic. It does not compare forecast to

observational data. Rather it is a measure of the distribution of forecast or observed cloud field
values taken individually.

The Equitable Skill Score (ESS), 20/20 Score, and Brier Score are all based on performance
matrices P (Figure 6-1). A performance matrix is simply a normalized two-dimensional histogram
of observed and forecast cloud field values. Each column j or row i represents a category of
observation or forecast, respectively. For example, the columns might represent 5% increments in
observed cloud fraction CF, with rows representing 5% increments in forecast CF as follows:

Category 1: 0.00 CF <0.05
Category 2: 0.05 CF<0.10
Category 3: 0.10 CF<O0.15

Category 20: 0.90 CF <0.95
Category 21: 0.95 CF<1.00

Each cell in the performance matrix contains the probability p,;= n‘.J/N that, given observation j,
the forecast will be i. Here ny; is the number of forecasts i for observation j and N is the total
number of cases 2".-; .
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OBSERVATION

1 2 3 - 21
VI Py | Pia| Pus q,
21pPy | P F’z:vl ________ _ qzr%
3 Py | P2 L %0
Lo ——— - -1 38
B Pt =
a by | ! ﬁ
P - (pij) = 9 rog | : T
[0 Py ! | 8
togp ! ' ®
Loy : C
T p, = 1 ' i
-~ Py = e
1) 2 T 92
Py P2 P3 %

OBSERVATIONAL PROBABILITY

P CONTINGENCY TABLE
pii RELATIVE FREQUENCY OF THE ith FORECAST FOR THE jth OBSERVATION

BIN CLOUD FRACTION CLOUD HEIGHT (m)
1 0.00 < 0.05 0<675
2 0.05 < 0.10 675 < 1350

2.1 0.95 <1.00 12,825 < 13,500

Figure 6-1. Performance matrix.

Skill score statistics are simply measures of the performance matrix probability distribution based
on various scoring matrices S. A scoring matrix assigns a score to each cell in the performance
matrix. An example of a scoring matrix is one that finds the relative frequency of correct
forecasts (Figure 6-2). If the forecast is perfect, then all the entries in the performance matrix lie
along on the diagonal where the forecast equals the observation. The scoring matrix shown in
Figure 6-2 assigns a 1 to each correct forecast and 0 to all incorrect forecasts. Thus, PS =1 for a
perfect forecast. The problem with this scoring matrix is that no credit is given for forecasts that
are approximately correct (near, but not on the performance matrix diagonal).
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e HOW GOOD IS THE FORECAST?

e ONE OBVIOUS MEASURE IS THE RELATIVE FREQUENCY OF

CORRECT FORECASTS
PERFORMANCE SCORING
MATRIX MATRIX
Py | P12} Pua 1j10lojogo
Pn| Pz c|]1|o]lo
Py o} [+] 1
ss = PS = X oo
0
§SS =X X p. S,
L

e PERFECT FORECAST GIVES A SCORE OF 1

Figure 6-2. Skill scores.

One scoring matrix that credits nearly-correct forecasts is the 20/20 scoring matrix. The 20/20
score S o0 TEASUTES the fraction of forecasts that are within £ 20% (i.e., within 4 categorys) of
the observed cloud field (Figure 6-3). The 20/20 scoring matrix S;ono is given by

S0 = (i) =1 where max (1, j-4) <i < min (21, j+4)
andj=0,1,...,21 . (6.1)
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NUMBER OF FORECASTS WITHIN 20% OF OBSERVATIONS

1{1]1]1]1]0]0
1[1(1]1[1]1]0
11 1]1]1]1
1(1]1]1]1
S=(s) = 1111
ol1(1
0|0
0

S; =1 WHERE max (1,j-4) <i < min (21,j+4);j=0,1,.,21

FORECAST SCORE*
PERFECT 1.00
RANDOM 0.38
AVERAGE 0.42

*ASSUMING EQUALLY LIKELY OBSERVATIONS

Figure 6-3. 20/20 score.

The 20/20 score is 1 for a perfect forecast. To understand the significance of the value of 20/20
score S, ., for an actual forecast, it is instructive to look at the 20/20 scores for random and
constant forecasts. Consider a large number of equally likely observations. The probability of a
particular observation falling in one of 21 possible performance categories is 1/21. For random
forecasts, the probability of a forecast being in any one of 21 equally-sized categories is also 1/21.

Therefore, the value of every cell in the performance matrix is p;;= 1/(21 x 21) for a random
forecast.

Now consider what happens if the forecast is always the same. Assume, for example, that a
cloud fraction of 45 to 50% (category 10) is always forecast. Then, for equally likely
observations i = 1, 2, ..., 21, the forecast probability is
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p =121  j=10

p =0 Jj# 10.

W

(6.2)

Applying the S, = scoring matrix to the random and constant performance matrices defined
above, yields S, =0.38 and 0.42, respectively. Notice that the score is nonzero even for

arbitrary forecasts.

The Brier score §, . is a measure of mean-squared error, so is particularly sensitive to off-

diagonal forecasts (Figure 6-4). The Brier scoring matrix S, . is defined

MEAN SQUARED DIFFERENCE BETWEEN

FORECAST AND OBSERVATION

.0000 | .0025 | .0010 1.0000
.0025 | .0000
’ .0010
1.0000 10000
s; = (F; "0;)2 WHERE F, = FORECAST, O; = OBSERVED

FORECAST SCORE*

PERFECT 0.00

RANDOM 0.18

AVERAGE 0.20

*ASSUMING EQUALLY LIKELY OBSERVATIONS

Figure 6-4. Brier score.
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SBrier = (si,j) = (0.05)2 1-j)2 . : (6.3)

The Brier score for a perfect forecast is 0. Assuming equally likely observations, the Brier score for
random and constant performance matrices are 0.18 and 0.20, respectively. Again, the score for an
arbitrary forecast is not the extreme error value (the extreme being 1).

As noted above, the 20/20 and Brier scores have the undesirable characteristic that constant and
random forecasts can be credited with significant forecast skill. Moreover, these scoring matrices
are inequitable in the sense that, in cases where not all observations are equally likely, constant
forecasts of some events lead to better scores than constant forecasts of other events. Itis
therefore desirable to devise and a scoring matrix with the properties that (i) scores assigned to
uncommon events, in terms of climatological probability, increase as climatological probability
decreases and (ii) scores of zero are assigned to random and constant forecasts.

An Equitable Skill Score (ESS) matrix has been formulated by Gandin and Murphy (1992) and
Gerrity (1992). A climatological probability vector can be defined from the performance matrix
as the probability of occurance of the jth observation

P=(p)=3:p; - 6.4)
Similarly, a predictive probability vector can be defined as the probability of occurance of the ith
forecast

q=(qi)=2jpij . (6.5)
Now define

1-Yp,
— r=1

D, =—7— (6.6)
2P,
r=1
1
R =— . .
"= (6.7)

Ry, 35 the ratio f the probability that an observation falls in a category greater than 7 to the
probaé)lﬁty that it fallé)into a category less than n. Following Gerrity, the ESS scoring matrix
S _— (s, J) is constructed as follows
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K-1

Spn = K[ER' +2D,] n=12,...K. - (6.8)
r=1 r=n

m-1 -1 K-1
Smn =K[ZR,+2(—1)+2D,] 1<m<K, m<n<K (6.9)
r=1 r=m r=n
Sam =Sm, 25n<K, 1<m<n (6.10)
K——l— (6.11)
i .

S s has the desirable properties that, when multiplied by the performance matrix, perfect

forecasts score 1, and random and constant forecasts score 0.

Another forecast skill diagnostic is sharpness. Sharpness is not a skill score but a measure of the
individual cloud cover distribution of observed and forecast clouds. It measures the relative
frequency of cases occupying the extreme categories of 0- to 20% and 80 to 100% cloud fraction.
Observed and forecast sharpness are

5 21
So=2.p+ . (6.12)

i=l i=17

5 21
Se=>4q:+>4 (6.13)
i=1

=17

Individual sharpness values have limited diagnostic utility. Only the relative values of observed
and forecast sharpness have meaning. Most cloud forecast techniques tend to forecast mid-range
cloud amounts. Comparing observed and forecast sharpness indicates whether the forecast model
captures outlying cloud distributions, or or whether it simply forecasts mid-range values. On the
other hand, sharpness values can be misleading. For example, the sharpness for an observed
100% overcast and that for a 100% clear forecast are identical.

The last two forecast diagnostics are bias and correlation. Bias is simply the difference between
observed and forecast values
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21 21

5=3 3(o-a) - e

=l j=i

Bias is zero for a perfect forecast. The matrix correlation C between forecast and observation is

Y (E-F)0,-0)

C N"=‘ — (6.15)

Be-rSo-or

i=1 i=1

where F; and O; are the forecast and observation cloud field values at N image pixels,

respectively. The overbar indicates the mean values of these quantities. Correlation C is one for
perfect forecast.
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